Journal of Organometallic Chemistry, 121 (1976) C29–C30 © Elsevier Sequoia S.A., Lausanne — Printed in The Netherlands

Preliminary communication

PREPARATION AND PROPERTIES OF SOME NEW ALKYL- AND ARYL-PALLADIUM COMPLEXES

G. KEVIN TURNER* and HUGH FELKIN

Institut de Chimie des Substances Naturelles, C.N.R.S., 91190 Gif-sur-Yvette (France) (Received September 1st, 1976)

Summary

Complexes of the type $(\eta - C_5 H_5)(PR_3)PdR'$ have been prepared by the reaction of R'MgBr with $(\eta - C_5 H_5)(PR_3)PdBr$ in toluene at $-78^{\circ}C$.

Several alkyl and aryl complexes of nickel [1] and platinum [2] of the form $(\eta - C_5 H_5)(PR_3)MR'$ are known, but only one arylpalladium compound of this type has been reported, viz. $(\eta - C_5 H_5)(PEt_3)PdPh$, isolated in low yield as an unstable, yellow oil and identified only by its PMR spectrum [2]. We now report the preparation and some properties of a number of alkyl- and aryl-palladium complexes of this type.

Treatment of a green toluene solution of $(\eta$ -C₅H₅)(PPh₃)PdBr (Ia) [2] at -78°C with excess ethereal MeMgBr gave an orange solution after 15 min. The solution was hydrolysed with aqueous NH₄Cl, dried with MgSO₄, filtered and the solvents removed under vacuum to leave an orange solid. Pure, air-stable, red-orange crystals of $(\eta$ -C₅H₅)(PPh₃)PdMe (IIa) were obtained in 70% yield by crystallisation from toluene/pentane at -30°C (m.p. 130–132°C (dec); PMR (C₆D₆): τ (C₅H₅) 4.12d ppm, J(P–H) 1.5 Hz; τ (CH₃) 9.34d ppm, J(P–H) 4.2 Hz).

The compounds IIb, IIc and IId have been isolated as analytically pure, orange crystals by analogous methods.

$$\begin{array}{cccc} (\eta - C_5 H_5)(PR_3)PdBr & \xrightarrow{R'MgBr} & (\eta - C_5 H_5)(PR_3)PdR' & \xrightarrow{SO_2} & (\eta - C_5 H_5)(PR_3)Pd - \stackrel{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}}{\overset{\circ}{\overset{\circ}}}{\overset{\circ}}{$$

**Oily solid, PMR (C₆D₆): τ(C₅H₅) 4.25 ppm, J(P-H) 1.2 Hz.

^{*}To whom correspondence should be addressed.

Complex IIa reacts with SO₂ in C₆D₆ solution to give a red solution of the S-methyl sulphinato complex $(\eta$ -C₅H₅)(PPh₃)PdSO₂Me (IIIa). The PMR spectrum of the product shows the C₅H₅ resonance shifted to higher field (τ 4.60 ppm, J(P-H) 1.5 Hz) than that of the starting material, and the methyl resonance appears as a singlet at τ 7.38 ppm. The infrared spectrum (nujol mull) of the solid, isolated by adding pentane, showed (in addition to bands due to coordinated C₅H₅ and PPh₃) two strong bands at 1199 and 1056 cm⁻¹, assigned to ν (SO₂) [3].

Reaction of complex IIc (m.p. 110–115°C (dec); PMR (C_6D_6): $\tau(C_5H_5)$ 4.12d ppm, J(P-H) 1.6 Hz) with SO₂ gave the S-phenyl sulphinate, IIIb (PMR (C_6D_6): $\tau(C_5H_5)$ 4.72d ppm, J(P-H) 1.5 Hz; IR (nujol): $\nu(SO_2)$, 1181, 1029 cm⁻¹).

The n-butyl complex IIb (m.p. 59–62°C (dec); PMR (C_6D_6): $\tau(C_5H_5)$ 4.07d ppm, J(P-H) 1.5 Hz) decomposes in CDCl₃ or C_6D_6 under N₂ at 35°C to give but-1-ene, cyclopentadiene and a palladium(0) species. The decomposition probably proceeds by β -hydrogen elimination from the butyl complex to give but-1-ene, and $(\eta-C_5H_5)(PPh_3)PdH$ as an intermediate, which reacts further to give cyclopentadiene and the palladium(0) species. Attempts to isolate the intermediate hydride were unsuccessful. In the presence of PPh₃ decomposition takes place to give Pd(PPh₃)₄.

Complex IIb also reacts with $(\eta - C_5 H_5)(PPh_3)PdBr$ (Ia) in $C_6 D_6$ to give but-1ene, cyclopentadiene and a quantitative yield of the dimeric palladium(I) complex $[\mu - (\eta^3 - C_5 H_5) - \mu - BrPd_2(PPh_3)_2]$ [4] presumably by attack of Ia by the palladium(0) species formed from the decomposition of IIb.

We thank the Compagnie des Métaux Précieux (Ivry) for a generous loan of palladium.

References

1 H. Yamazaki, T. Nishido, Y. Matsumoto, S. Sumida and N. Hagihara, J. Organometal. Chem., 6 (1966) 86.

- 2 R.J. Cross and R. Wardle, J. Chem. Soc. A, (1971) 2000.
- 3 A. Wojcicki, Accounts Chem. Res., 4 (1970) 344.
- 4 A. Ducruix, H. Felkin, C. Pascard and G.K. Turner, Chem. Commun., (1975) 616.